UNIVERSITY OF ARIZONA DEPARTMENT OF CHEMICAL AND ENVIRONMENTAL ENGINEERING CHEE 413 PROCESS CONTROL AND SIMULATION SPRING, 20XX

Prerequisites:

ChEE 301A, 301B, 401A (unit operation laboratories), 402 (ODEs, PDEs, Laplace Transform) and 420 (chemical reaction engineering) and familiarity with MATLAB.

Course Description:

Theory of automatic control as applied to elementary chemical engineering processes. Use of continuous system simulation languages for study of practical control problems in the process industries.

Instructor:

Dr. Songtao Xie Office: Harshbarger 105B Office Hours: TBD Email: songtaoxie@email.arizona.edu Tel: 520-621-3155

Teaching Assistants: TBD

Office: TBD Office Hours: TBD Email: xxx@arizona.edu Tel: 520-xxx-xxxx

TBD Office: TBD Office Hours: TBD

Email: xxx@arizona.edu Tel: 575-xxx-xxxx

Course Objectives:

Upon completion of this course, students should be able to

- 1. Develop working knowledge of process control hardware such as valves, thermocouples, pumps, and microcontrollers.
- 2. Represent dynamic chemical and physical process by differential equations.
- 3. Solve systems of differential equations by Laplace transform and numerical methods.
- 4. Recast a dynamic system using a series of transfer function in a block diagram.
- 5. Tune a single loop PID controller.
- 6. Design and troubleshoot control loops based on stability criteria and empirical techniques.
- 7. Apply frequency analysis of dynamic processes.
- 8. Understand how process dynamics affect control.

Textbook:

<u>Process Dynamics and Control</u>, 3rd edition, Wiley (2010) by D. E. Seborg, T. Edgar, D. A. Mellichamp, F. J. Doyle, ISBN 978-0-470-12867-1.

Course Times:

Course Outline:

This class will cover the following chapters of the textbook:

- 1. Theoretical Models of Chemical Processes (chapter 2)
- 2. Laplace Transforms and Transfer Functional Models (chapter 3 & 4)
- 3. Dynamic behavior of first, second and higher order systems (chapter 5 & 6)
- 4. Introduction to process control (chapter 1 and 9)
- 5. Feedback controllers (chapter 8)
- 6. Dynamic behavior and stability of closed-loop control systems (chapter 11)
- 7. PID controller design, tuning, and troubleshooting (chapter 12)
- 8. Frequency Response Analysis and control system design (chapter 14)
- 9. Feedforward and Ratio Control (chapter 15)

Course Policies:

Successful performance in this class requires that you attend the class. Please contact with the Instructor or TA for unavoidable absences, such as medical conditions, interview trips and conference. All holidays or special events observed by organized religions will be honored for those students who show affiliation with that particular religion. The complete list of UA approved holidays is available at: http://registrar.arizona.edu/calendar-religious-holidays. Absences pre-approved by the UA Dean of Students (or Dean designee) will be honored.

To ensure an environment respectful of learning, telephone/electronic devices, or other communication technologies are strongly discouraged unless used for legitimate learning purpose, like searching for information related to the lecture.

Homework assignments are due at the beginning of class on the date specified on the problem set. No late homework will be accepted without prior permission from the instructor or TA. Group discussion on problem sets is encouraged, however, copy of someone else's work or solution manual is not allowed, and will result in a score of 0 for everyone involved.

Make-ups for midterm exams will be given only in the case of university-approved absence and documentable emergencies. All excuses must include adequate documentations. There will be no makeup for final exam. Students judged to have engaged in copying on an exam will receive score of 0 for that particular exam.

Course Website:

D2L websites for ChEE 413 and ChEE 401B

Course Grade: Attendance

Pre-lecture Quiz	10%			
Homewoks	20%			
Exam 1	20%			
Exam 2	20%			
Final Exam	20%			
Total	100%			
Grades will be based on a percentage of the total possible points:				
A = 90-100; B = 80-89; C = 70-79; D = 60-69; E = 0-59				

Final Exam:

The final exam will be conducted in the exam period of the semester. Students will complete this exam in 180 mins within a 48-hour window. The exam sheets and zoom videos will be submitted to the dropboxes on D2L for grading. Students could finish individual questions of the exam in different time of 48-hour window. However, the total amount of time should be limited to 180 mins.

Important Dates:

All dates and deadlines regrading registration, dropping, etc. can be found at http://www.registrar.arizona.edu/courses/dates-dealines.

Academic Integrity:

See http://deanofstudents.arizona.edu for the UA policies on academic integrity. This course encourages and requires collaboration. However, copying someone else's work or allowing someone else to copy your work is unacceptable and a clear violation of academic integrity. You should not copy homework solutions from any source whatsoever. Doing so only defeats the rational of the homework assignments. Exams must be individual effort of each student. You must not discuss the exams with anyone but the instructor. Any violation of the Academic Integrity code will not be tolerated and dealt with in as a severe manner as possible.

Accessibility and Accommodation:

It is the University's goal that learning experiences be as accessible as possible. If you anticipate or experience physical or academic barriers based on disability, please let me know immediately so that we can discuss options. You are also welcome to contact Disability Resources (520-621-3268) to establish reasonable accommodations.

SALT Center and Disability Resource Center:

Students who are able to use the services of the Strategic Alternatives Technology Center or may have other educational needs may see the instructor at any time to discuss accommodations for their needs. However, this should be done at least one week prior to the first exam to allow for preparations that may be needed. Students who are registered with the Disability Resource Center must submit appropriate documentation to the instructor if they are requesting reasonable accommodations (http://drc.arizona.edu/teach/syllbus-statement.html).

Threatening Behavior:

The University seeks to promote a safe environment where students and employees may participate in the educational process without compromising their health, safety, or welfare. The Arizona Board of Regents (ABOR) Student Code of Conduct, ABOR Policy 5-308, prohibits threats of physical harm to any member of the University community, including to one's self. The more detailed policy can be found at: http://policy.web.arizona/education-and-student-affairs/threatening-behavior-students.

Extracurricular Activities: none

Changes to the syllabus:

The information contained in the course syllabus may be subject to change with reasonable advanced notice as deemed appropriate by the instructor.

Week	Date	Day	Lec #	Reading Assigned	Homework Due	Pre Class Activities	Торіс
1	XXXX	X	1	Ch.3 (p. 40 – p. 45)			Laplace Transform
	XXXX	X	2	Ch.3 (p.45 – p.49)	HW 1	Pre-Quiz 1	Partial Fraction Expansion
2	XXXX	X	3	MLK Holiday			
	XXXX	X	4	Ch.3 (p.49 – p.54)			Laplace Transform Properties
	XXXX	X	5	Ch.2 (p.14 – p.21)	HW 2	Pre-Quiz 2	Conservation Laws
3	XXXX	X	6	Ch.2 (p.21 – p.26)			Dynamic Models I
	XXXX	X	7	Ch.2 (p.26 – p. 33)			Dynamics Models II
	XXXX	X	8	Ch.4 (p.59 – p.62)	HW 3	Pre-Quiz 3	Transfer Function
4	XXXX	X	9	Ch.4 (p.62 – p.65)			Transfer Function Properties
	XXXX	X	10	Ch.4 (p.65 – p. 69)			Linearization
	XXXX	X	11	Ch.5 (p.73 – p.76)	HW 4	Pre-Quiz 4	Standard Process Inputs
5	XXXX	X	12	Ch.5 (p.76 – p.79)			First Order Process Response
	XXXX	x	13	Ch.5 (p.81 – p.86)			Second Order Process Response
	XXXX	X	14		Test 1		
6	XXXX	X	15	Ch.6 (p.92 – p.96)			Poles and Zeros

ChEE 413 Spring 20XX Class Schedule (subject to change - check D2L for updates)

	XXXX	X	16	Ch.6 (p.96 – p.102)			Approximation of Higher-Order Transfer Function		
	XXXX	X	17	Ch.6 (p.103 – p.107)	HW 5	Pre-Quiz 5	State Space Models		
	XXXX	X	18	Ch.7 (p.119 – p. 123)			Fitting First and Second Order Models		
7	XXXX	X	19	Ch.7 (p.125 – p.129)			Discrete-Time Dynamic Models		
	XXXX	X	20	Ch.1 (p.1 – p. 7)	HW 6	Pre-Quiz 6	Introduction to Process Control		
	XXXX	x	21	Ch.9 (p.150 – p.156)			Sensors, Transmitters and Transducers		
0	XXXX	X	22	Ch.9 (p.156 – p.162)			Final Control Element		
	XXXX	X	23	Ch.13 (p.237 – p.243)	HW 7	Pre-Quiz 7	Control Strategies		
9	xxxx-xxxx Spring Break								
	XXXX	X	24	Ch.8 (p.134 – p.141)			Basic Control Modes		
10	XXXX	X	25	Ch.8 (p.141 – p.145)			PID Controllers		
	XXXX	X	26		HW 8	Pre-Quiz 8			
11	XXXX	X	27	Ch.11 (p.183 – p.189)			Closed-Loop Transfer Functions		
	XXXX	X	28	Ch.11 (p.189 – p.194)			Closed-Loop Response		
	XXXX	X	29		Test 2				
	XXXX	X	30	Ch.11 (p.194 – p.200)			Stability of Closed- Loop Control Systems		
12	XXXX	X	31	Ch.11 (p.200 – p.202)			Root Locus Diagram		
	XXXX	X	32	Ch.12 (p.210 – p.217)	HW 9	Pre-Quiz 9	Model Based Design Methods		
13	XXXX	x	33	Ch.12 (p.217 – p.222)			Controller Tuning Relations		

	XXXX	X	34	Ch.12 (p.222 – p.228)			On-Line Controller Tuning
	XXXX	X	35	Ch.12 (p.228 – p.231)	HW 10	Pre-Quiz 10	Troubleshooting
	XXXX	X	36	Ch.14 (p.251- p.253)			Sinusoidal Forcing of First Order Process
14	XXXX	X	37	Ch.14 (p.253 – p.254)			Sinusoidal Forcing of n-th Order Process
	XXXX	X	38	Ch.14 (p.254 – p.258)	HW 11	Pre-Quiz 11	Bode Diagram
	XXXX	X	39	Ch.14 (p.258 – p.263)			Nyquist Diagram
15	XXXX	X	40	Ch.14 (p.263 – p.266)			Bode Stability Criterion
	XXXX	X	41	Ch.14 (p.266 – p.268)	HW 12	Pre-Quiz 12	Gain and Phase Margins
	XXXX	x	42	Ch.15 (p.273 – p.277)			Feedforward/Ratio Control
16	XXXX	X	43	Ch.15 (p.277 – p.279)			Feedforward Controller Design Based on Steady State Models
	XXXX	X	44	Ch.15 (p.279 – p.283)	HW 13	Pre-Quiz 13	Feedforward Controller Design Based on Dynamic Models
17	XXXX	X	45	Ch.15 (p.283 – p.285)			Feedforward Controller Tuning
	XXXX	X	46	Ch.15 (p.289 – p.294)			Cascade Control
	XXXX				Final Exam		

All homework is due on the days listed above unless otherwise designated on a specific problem handout.